Methods
Each forecast class has the predict
method. This is the same parameterization for each of the forecast classes.
tablespoon.forecasters.Mean.predict(df_historical, horizon=30, frequency=None, uncertainty_samples=5000, include_history=False)
Predict - forecast method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_historical |
pd.DataFrame
|
A date sorted dataframe with the columns |
required |
horizon |
int
|
Forecast horizon. Defaults to 30. |
30
|
frequency |
int
|
number of rows that make a seasonal period. Defaults to None. |
None
|
lag |
int
|
number of rows that make a seasonal period. Defaults to 1. |
required |
uncertainty_samples |
int
|
number of uncertainty samples to draw. Defaults to 5000. |
5000
|
include_history |
bool
|
include history. Defaults to False. |
False
|
chain_ids |
str
|
identifiers for chain ids. Defaults to None. |
required |
verbose |
bool
|
verbose. Defaults to False. |
required |
Returns:
Type | Description |
---|---|
pd.DataFrame: A dataframe of predictions as |
Example
import pandas as pd
import tablespoon as tbsp
from tablespoon.data import APPL
df_APPLE = APPL
df_APPLE = df_APPLE.assign(ds = lambda df: pd.to_datetime(df.ds))
mean = tbsp.Mean()
df_f = (n.predict(df_APPLE, horizon=7*4, frequency="D", lag = 1, uncertainty_samples = 500).assign(model = 'mean'))
df_f.head(10)
Source code in tablespoon/forecasters.py
tablespoon.forecasters.Naive.predict(df_historical, horizon=30, frequency=None, lag=1, uncertainty_samples=5000, include_history=False)
Predict - forecast method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_historical |
pd.DataFrame
|
A date sorted dataframe with the columns |
required |
horizon |
int
|
Forecast horizon. Defaults to 30. |
30
|
frequency |
int
|
number of rows that make a seasonal period. Defaults to None. |
None
|
lag |
int
|
number of rows that make a seasonal period. Defaults to 1. |
1
|
uncertainty_samples |
int
|
number of uncertainty samples to draw. Defaults to 5000. |
5000
|
include_history |
bool
|
include history. Defaults to False. |
False
|
chain_ids |
str
|
identifiers for chain ids. Defaults to None. |
required |
verbose |
bool
|
verbose. Defaults to False. |
required |
Returns:
Type | Description |
---|---|
pd.DataFrame: A dataframe of predictions as |
Example
import pandas as pd
import tablespoon as tbsp
from tablespoon.data import APPL
df_APPLE = APPL
df_APPLE = df_APPLE.assign(ds = lambda df: pd.to_datetime(df.ds))
naive = tbsp.Naive()
df_f = (naive.predict(df_APPLE, horizon=7*4, frequency="D", lag = 1, uncertainty_samples = 500).assign(model = 'naive'))
df_f.head(10)
Source code in tablespoon/forecasters.py
tablespoon.forecasters.Snaive.predict(df_historical, horizon=30, frequency=None, lag=7, uncertainty_samples=5000, include_history=False)
Predict - forecast method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_historical |
pd.DataFrame
|
A date sorted dataframe with the columns |
required |
horizon |
int
|
Forecast horizon. Defaults to 30. |
30
|
frequency |
int
|
number of rows that make a seasonal period. Defaults to None. |
None
|
lag |
int
|
number of rows that make a seasonal period. Defaults to 7 (7 days of a week). |
7
|
uncertainty_samples |
int
|
number of uncertainty samples to draw. Defaults to 5000. |
5000
|
include_history |
bool
|
include history. Defaults to False. |
False
|
chain_ids |
str
|
identifiers for chain ids. Defaults to None. |
required |
verbose |
bool
|
verbose. Defaults to False. |
required |
Returns:
Type | Description |
---|---|
pd.DataFrame: A dataframe of predictions as |
Example
Source code in tablespoon/forecasters.py
CV Class
tablespoon.model_selection.TimeSeriesInitialSplit
Time Series cross-validator with initial period
Provides time series splits for rolling origin type cross validation. This means users may set an initial time period. gap size, and increment_size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
initial |
int, default=21 Number of splits. |
7 * 3
|
|
increment_size |
int, default=7 Sets the size of the test set to be added at each iteration |
7
|
|
gap |
int, default=0 Number of samples to exclude from the end of each train set before the test set. |
0
|
Examples:
import numpy as np
from tablespoon.model_selection import TimeSeriesInitialSplit
X = np.arange(0,50)
tscv = TimeSeriesInitialSplit()
for train_index, test_index in tscv.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
> TRAIN: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] TEST: [21 22 23 24 25 26 27]
> TRAIN: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27] TEST: [28 29 30 31 32 33 34]
> TRAIN: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34] TEST: [35 36 37 38 39 40 41]
> TRAIN: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41] TEST: [42 43 44 45 46 47 48]
Source code in tablespoon/model_selection.py
Forecaster Classes
tablespoon.forecasters.Naive
Bases: object
Naive Forecaster
Parameters:
Name | Type | Description | Default |
---|---|---|---|
object |
None
|
instantiates a Naive Forecast object |
required |
Source code in tablespoon/forecasters.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
tablespoon.forecasters.Snaive
Bases: object
Seasonal Naive Forecaster
Source code in tablespoon/forecasters.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
tablespoon.forecasters.Mean
Bases: object
Mean Forecaster
Source code in tablespoon/forecasters.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
Data
APPL
APPL stock price data. A time series data set with non-seasonal patterns
SEAS
A seasonal time series
WALMART
Walmart sales for California from M5. A time series data set with seasonal patterns.